ELEIVERSITY ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

FIRST SEMESTER EXAMINATION 2022/2023 ACADEMIC SESSION
COURSE TITLE: FUNDAMENTALS OF ELECTRICAL ENGINEERING/BASIC ELECTRICAL ENGINEERING I

COURSE CODE: GNE 257/GNE 223
EXAMINATION DATE: 5 ${ }^{\text {TH }}$ APRIL, 2023
COURSE LECTURER: ENGR. OSHIN OLA A
\square

HOD'S SIGNATURE

TIME ALLOWED: 2 HOURS

INSTRUCTIONS:

1. ANSWER ANY FOUR QUESTIONS ONLY
2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIAL DURING THE EXAMINATION.

Question 1

a. Differentiate between the following pairs of elements: Linear, Non-linear, passive and active elements (4 marks)
b. Determine the current in the $8-\Omega$ resistor using nodal analysis or superposition theorem in the circuit shown in Fig.Q1b (8 marks)

Fig. QIb
c ii. Convert the network circuit in Frg.Q1c to an equivalent Thevenin's circuit

ii) Determine the current flowing in the $\mathbf{1 . 8} \Omega$ resistor using Thevenin's theorem or Kirchhoff's theorem (8 marks)

Question 2

a. i. Briefly describe the following terms:
(i) Transient and
(ii) Time constant for a C-R circuit (4 marks)
ii. Describe the transient response of capacitor and resistor voltages and current in a series R-C d.c Circuit (4 marks)
iii. Illustrate the transient growth and decay for the C-R Circuit in Q2a ii (2 marks)
b. The circuit shown in figure Q2b is a $50 \mu \mathrm{~F}$ uncharged capacitor connected in series to a 1 k
Ω resistor and the circuit is switched to a 100 V , d.c. supply.

Determine:
i. the initial current flowing in the circuit,
ii. the time constant
iii. the value of current when t is 50 ms and
iv. the voltage across the resistor 60 ms after closing the switch (10 marks)

Question 3

a.
(i) Describe the operation principle of a full wave rectification (4 marks)
(ii) Explain the process of removing unwanted ripples from the output of a rectifier (2 marks)
(iii) State and explain four (4) important parameters to be considered when choosing a smoothing capacitor for use in a rectifier (4 marks)
b. i. Determine the current in the 8Ω resistor using Norton's theoremin the circuit of Fig. Q3b

Fig. Q3b
(ii) Hence, determine the power dissipated in the 8Ω resistor (12 marks)

Question 4

a. With the aid of suitable waveform diagrams, describe what you understand by the following
i. Leading power factor in a purely capacitive circuit
ii. Lagging power factor in a purely inductive circuit (4 marks)
b. The instantaneous value of two alternating voltages shown in Fig. Q4b are represented by $\mathrm{V}_{1}=236.174 \sin \left(15710 \mathrm{t}-12.68^{0}\right), \mathrm{V}_{2}=147.078 \sin \left(15710 \mathrm{t}+67.38^{0}\right)$

$$
R_{1}=40-\Omega \quad C_{1} \quad R_{2} \quad L_{1}=1.528 \mathrm{mH}
$$

The supply frequency is 2.5 kHz and find a sinusoidal expression representing $V_{1}+$ V_{2}
i. Express V_{1} in phasor form and in rectangular form
ii. Express V_{2} in phasor form and in rectangular form
iii. Find a sinusoidal expression representing $V_{1}+V_{2}$
iv. Draw the phasor diagram for the circuit (16 marks)

Question 5

a. Explain what you understand by the following terms in relation to PN type semiconductor diode :
i. reverse bias
ii. forward bias
iii. depletion layer
iv. contact potential (10 marks)
a. Corresponding readings of base current, I_{B}, and base-emitter voltage, V_{BE}, for a bipolar junction transistor are given in the table Q5b:

$V_{B E}$ $(\mathrm{~V})$	0	0.0	0.2	0.3	0.4	0.5	0.6	0.7	0.8
$I_{B}(\mu$ $\mathrm{A})$	0	0	0	0	1	3	19	57	130

Plot the $I_{\mathrm{B}} / V_{\mathrm{BE}}$ characteristic for the device and use it to determine
(a) the value of I_{B} when $V_{\mathrm{BE}}=0.65 \mathrm{~V}$,
(b) the static value of input resistance when $V_{\mathrm{BE}}=0.65 \mathrm{~V}$, and
(c) the dynamic value of input resistance when $V_{\mathrm{BE}}=0.65 \mathrm{~V}$ (10 marks)

Question 6

a. With reference to a $n-p-n$ transistor, explain briefly what is meant by the term 'transistor action' and why a bipolar junction transistor is so named. (5 marks)
b. With the aid of a suitable diagram, explain how a transistor can be used as switch using a light dependent resistor
c. Determine the total admittance (Y), Conductance (G) and Inductive Susceptance $\left(B_{L}\right)$ in rectangular and polar forms for the circuit in Fig. Q6c

Fig. Q6c

